
1

Module T10

Software Engineering

Testing

Fundamentals

Black Box Testing

White Box Testing

Levels of Testing

Debugging

ñWhen debugging, novices

insert corrective code; experts

remove defective code.ò

- Richard Pattis

3

ÁWhat is it?

üFailure to meet expectations

ÁWhat expectations are not achieved?

üOver budget

üExceeds schedule and/or misses market window

üDoesnôt meet stated customer requirements

ü Lower quality than expected

üPerformance doesnôt meet expectations

üToo difficult to use

Software Failure

3

4

Á Cost: 3 dead, 3 critically injured

Á Disaster: The Therac-25 was a radiation

therapy machine produced by Atomic

Energy of Canada Limited (AECL).

Patients were given massive overdoses

of radiation.

Á Cause: Due to a subtle bug called a race

condition, a technician could accidentally

configure Therac-25 so the electron

beam would fire in high-power mode

without the proper patient shielding

Á Multiple causes most of them bad

software engineering practices.

ü Code reuse

ü Removal of mechanical interlocks

ü Unreasonable faith in software

Fatal Dose (1985 -87)

5

Á Cost: 28 soldiers dead, 100 injured

Á Disaster: During the first Gulf War, an

American Patriot Missile system in

Saudi Arabia failed to track and

intercept an incoming Iraqi Scud missile.

The missile destroyed an American

Army barracks.

Á Cause: A software rounding error

of 0.000000095 decimal combined with

system uptime of 100 hours caused the

incoming Scud to lie outside the ñrange

gateò that the Patriot tracked.

Patriot Surface -to -Air Missile (1991)

6

Á Cost: $500 million (R&D $7 billion)

Á Disaster: Ariane 5, Europeôs newest unmanned

rocket, was intentionally destroyed 39 seconds

after launch. Also destroyed was its cargo of

four expensive and uninsured scientific

satellites.

Á Cause: Shutdown occurred when the guidance

computer tried to convert the sideways rocket

velocity from 64-bits to a 16-bit format. The

number was too big, and an overflow error

resulted. When the guidance system shut down,

control passed to an identical redundant unit,

which also failed because it was running the

same algorithm.

Ariane Rocket Goes Boom (1996)

7

Á Cost: $125 million

Á Disaster: After a 286-day journey from

Earth, the Mars Climate Orbiter

spacecraft flew on a trajectory that

brought it too close to Mars, causing it to

disintegrate.

Á Cause: Navigation team at the Jet

Propulsion Laboratory used the metric

system, while Lockheed Martin

Astronautics (like all US industries),

which designed and built the spacecraft,

used the English system. The error had

affected the orbiter mission from its

launching almost 10 months and 416

million miles before its Sept. 23, 1999

failure.

Lost in Translation (1999)

8

Examples of

Software

Failure

[Charette95]

9

Á Process of evaluating a system or its component(s) with the

intent to find that whether it satisfies the specified

requirements or not.

Á Myers 79

üTesting is the process of executing a program with the intention of

finding errors.

üA good test case is one that has high probability of finind an

undiscovered error

üA successful test is on that uncovers an as-yet undisscovered error

What is Testing?

10

Á Classic example from Glenford MyersôThe Art of Software Testing, first

published in 1979.

Á Function triangle takes three integers a,b,c which are the length of

triangle sides;

ü Calculate whether the triangle is equilateral, isosceles, or scalene.

Trivial Example in Testing

[Myers79] G.J. Myers, Art of Software Testing, John Wiley & Sons, Inc., 1979.

requires: 1 <= a,b,c <= MAXINT
effect: determine triangle type
def triangle (a , b, c):

a, b, c = sorted ([a, b, c])
if (a + b) <= c:

return ' notvalid '
if a == b == c:

return 'equilateral'
if (a == b) or (b == c) or (a == c):

return ' isoceles '
else :

return 'scalene '

11

Á "just try it and see if it works..."

Á At MAXINT = 100, exhaustive testing would require 1 billion

runs!

Á Key problem: choosing test suite (set of partitions of inputs)

üSmall enough to finish quickly

ü Large enough to validate the program

Whatõs so hard about testing ?

requires: 1 <= a,b,c <= MAXINT
effect: determine triangle type
def triangle (a, b, c):

[Myers79]

12

Á Do you have a test case for an equilateral triangle?

Á Do you have a test case for an isosceles triangle?

Á Do you have at least three test cases for isosceles triangles, where all permutations
are considered? (e.g. (a,a,b), (a,b,a), (b,a,a))

Á Do you have a test case for an admissible scalene triangle?

Á Do you have a test case with one side zero?

Á Do you have the test case (0,0,0)?

Á Do you have a test case with negative values?

Á Do you have a test case with negative values?

Á Do you have a test case where the sum of two sides equals the third one?

Á Do you have at least three test cases for such non-triangles, where all permutations of
sides are considered?

Á Do you have a test case where the sum of the two smaller inputs is greater than the
third one?

Á Do you have at least three such test cases, considering all permutations?

Á Do you have test cases with very large integers (exceeding MAXINT) ?

Á Do you have a test case with non-integer values but numbers?

Á Do you have a test case with non-numbers e.g. strings, characters é

Á Do you have a test case where 2 or 4 inputs are provided?

How Thorough Can We Be?

[Myers79]

13

Á This example should demonstrate that

testing even a trivial program is not an

easy task.

Á Consider the problem of testing an air

traffic guidance system with 100,000

instructions, a compiler or just a payroll

program.

Testing Isnõt So Trivial

[Myers79]

14

Á Test case

üA test input (or its execution trace)

Á Test suite

üSet of test cases

Á Test purpose

üA formal specification to guide testing

ü e.g. a regular expression which the test case should satisfy y

Á Coverage criterion

üA guide to exhaustively cover program structure.

ü e.g. Statement coverage, Cond. coverage, Path coverage

Common Terminology

15

Á An early start to testing reduces the cost, time to rework and

error free software that is delivered to the client.

Á Testing can be started from the Requirements Gathering

phase and lasts till the deployment of the software.

Á However it also depends on the development model that is

being used.

ü In Water fall model formal testing is conducted in the Testing phase

ü In incremental model, testing is performed at the end of every

increment/iteration and at the end the whole application is tested.

When to Start Testing?

16

Á Testing is a never ending process and no one can say that

any software is 100% tested.

Á Aspects which should be considered to stop the testing:

üTesting Deadlines.

üCompletion of test case execution.

üCompletion of Functional and code coverage to a certain point.

üBug rate falls below a certain level and no high priority bugs are

identified.

üManagement decision.

When to Stop Testing?

17

B
la

c
k
-b

o
x
 t
e
s
ti
n
g ÅAlso known as

behavioral testing or
functional testing

ÅDriven by the programôs
specification

ÅTreats the software as
a "black box",
examining functionality
without any knowledge
of internal
implementation

W
h

it
e
-b

o
x
 t

e
s
ti
n
g Åalso known as clear box

testing, glass box
testing, transparent box
testing and structural
testing

Ådriven by the programôs
implementation

Åtests internal structures
or workings of a
program

Black Box vs White Box

Internals

Fully

Known

Internals

Not

Known

18

Á Static vs. dynamic testing

üStatic:

ÁReviews, walkthroughs, or inspections

üDynamic:

Áactually executing programmed code with a given set of test cases

Testing Methods

19

Á Static code analysis is done without executing any of the

code

üPeer review / code inspection

ÁA human review process

ÁFind defects early

ÁIncreases code understanding

üCode scanners

ÁSoftware tools for simulated execution

ÁChecks exceptions, optimization, resource leaks, security

ÁMany tools available: Veracode, Checkstyle, FindBugs, Lint

Static Code Analysis

20

Á Unit testing

üStructural approach (white box or glass box)

üFunctional approach (black box)

Á Testing full programs

ü Integration testing

üRegression testing (Check that the program still works after a feature

is added to a tested program)

üStress testing (e.g. web-service with many users)

Dynamic Test Approaches

21

Á Validation

ü The assurance that a product, service, or system meets the needs of the

customer and other identified stakeholders. It often involves acceptance

and suitability with external customers.

üñAre you building the right thing"

Á Verification

ü The evaluation of whether or not a product, service, or system complies

with a regulation, requirement, specification, or imposed condition. It is

often an internal process.

üñAre you building it right?ñ

Á Verification and Validation are independent procedures that are

used together for checking that a product, service, or system

meets requirements and specifications.

Validation & Verification

22

Choose input data /
configuration

Define the expected
outcome

Run program /
method against the
input and record the

results

Examine
results

against the
expected
outcome

How is Testing Done?

Fundamentals

Black Box Testing

White Box Testing

Levels of Testing

Debugging

ñBugs lurk in corners and

congregate at boundaries.ò

ð Boris Beizer

24

Black -box testing

I

e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

25

Boundary
Value

Testing

Equivalence
Class

Testing

Decision
Table based

Testing

Black Box Testing Approaches

26

Á Single fault assumption:

üFailures are only rarely the result of the simultaneous occurrence of

two (or more) faults

Á Experience show that test cases that are close to boundary

condition have higher chances of detecting an error

Á Standard BVA vs Robustness Testing

Boundary Value Analysis

27

Á For each variable, select five values:

üMinimum (min)

ü Just above minimum (min+)

üNominal value (nom)

ü Just below maximum (max-)

üMaximum (max)

Á Test cases : 4n+1

ü 4 : (min, min+, max-, max)

ü 1 : Nominal

Standard BVA

28

Á Extension of standard BVA

Á Add two more values per variable:

ü Just below minimum (min-)

ü Just above maximum (max+)

Á Test cases : 6n+1

ü 6 : (min-, min, min+, max-, max, max+)

ü 1 : Nominal

Robustness Testing

29

ÁChecking a ñmonthò input variable

Á Standard BVA:

ü 1,2,11,12

Á Robustness Testing BVA

ü 0,1,2,11,12,13

Example 1

30

Á Assume we have a

program with two input

variables, which have any

value from 100 to 300

Á Test cases are: (200,100),

(200,101), (200, 200), (200,

299), (200, 300), (100,

200), (101, 200), (299,

200), (300, 200)

Example 2

K.K. Aggarwal & Yogesh Singh, New Age

International Publishers, New Delhi, 2005.

31

Á Apply robust test cases to

the same problem

Á Test cases are: (200,99),

(200,100), (200,101)

(200,200), (200,299),

(200,300) (200,301)

(99,200), (100,200),

(101,200),

(299,200),(300,200),

(301,200)

Example 2

K.K. Aggarwal & Yogesh Singh, New Age

International Publishers, New Delhi, 2005.

32

Á Complements boundary value analysis

Á Boundary Value Testing derives test cases with

üSerious gaps

üMassive redundancy

Á Avoid redundancy Ą Have fewer test cases

Á Complete testing Ą Remove gaps

Á The variable domain is partitioned into disjoint sub-sets

üCompleteness

ÁThe entire set is represented by the union of the sub-sets

üRedundancy

ÁThe disjointness of the sets assures a form of non-redundancy

Á Choose one test case from each sub-set

Equivalence partitioning

33

Á Divide the input domain into equivalence classes of data

Á The test of a representative value of each class is equivalent

to a test of any other value

Á An equivalence class represents a set of valid or invalid

states for input conditions

üAn input condition is:

ÁA specific numeric value

ÁA range of values

ÁA set of related values

ÁA Boolean condition

Equivalence partitioning

34

1. The equivalence classes are identified by taking each input

condition and partitioning it into valid and invalid classes.

üFor example, if an input condition specifies a range of values from 1 to

999, we identify one valid equivalence class [1<item<999]; and two

invalid equivalence classes [item<1] and [item>999].

2. Generate the test cases using the equivalence classes

identified in the previous step.

ü Writing test cases covering all the valid equivalence classes.

ü Then write a test case for each invalid equivalence class so that no

test contains more than one invalid class.

ü This ensures that no two invalid classes mask each other.

Implementation Steps

35

Equivalence partitioning

System

Outputs

Invalid inputs Valid inputs

36

Example 1

Á If input is a 5-digit integer between 10,000 and 99,999,
equivalence partitions are

1. <10,000,

2. 10,000-99,999

3. > 100,000

Á Choose test cases at the boundary of these
sets

ü 00000, 09999, 10000, 99999, 100001

37

Áñmonthò variable --- 3 equivalence partitions:

üÒ0, 1..12, >12

Á Can have different handling for diff. values:

ü Ò0, 1..3, 4..12, >12

Example 2

if (month >= 0) && (month < 13):

if (month >= 0) && (month < 13):
if (month < 4):

... something
else:

... different thing ...

38

Á When data items are stored in a collection such as a list, we say
that they have a linear or sequential relationship. Each data item is
stored in a position relative to the others. In Python lists, these
relative positions are the index values of the individual items.
Since these index values are ordered, it is possible for us to visit
them in sequence. This process gives rise to our first searching
technique, the sequential search.

Á Starting at the first item in the list, we simply move from item to
item, following the underlying sequential ordering until we either
find what we are looking for or run out of items. If we run out of
items, we have discovered that the item we were searching for
was not present.

Example 3 Sequential Search

39

Sequential Search

def sequentialSearch (elemArray , key):
pos = 0
found = False

while pos < len (elemArray) and not found :
if elemArray [pos] == key:

found = True
else :

pos = pos +1
return found,pos

testlist = [0, 2, 32, 8, 17, 19, 42, 13, 0]
print (sequentialSearch (testlist , 3))
print (sequentialSearch (testlist , 13))

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheSequentialSearch.html

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheSequentialSearch.html

40

Á Inputs which conform to the pre-conditions

Á Inputs where a pre-condition does not hold

Á Inputs where the key element is a member of

the array

Á Inputs where the key element is not a member

of the array

Search routine - input partitions

41

Search routine - input partitions

Array Element

Single value In sequence

Single value Not in sequence

More than 1 value First element in sequence

More than 1 value Last element in sequence

More than 1 value Middle element in sequence

More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)

17 17 true, 1

17 0 false, ??

17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ??

42

Example 4 Binary Search
def binarySearch (elemArray , key):

first = 0
last = len (elemArray) - 1
found = False

while first <=last and not found :
midpoint = (first + last) // 2
if elemArray [midpoint] == key:

found = True
else :

if item < elemArray [midpoint]:
last = midpoint - 1

else :
first = midpoint +1

return found,midpoint

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print (binarySearch (testlist , 3))
print (binarySearch (testlist , 13))

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

43

Á We can take advantage of the ordered list by using binary search
instead of linear search.

Á A binary search will start by examining the middle item. If that
item is the one we are searching for, we are done. If it is not the
correct item, we can use the ordered nature of the list to eliminate
half of the remaining items. If the item we are searching for is
greater than the middle item, we know that the entire lower half of
the list as well as the middle item can be eliminated from further
consideration. The item, if it is in the list, must be in the upper half.

Example 4 Binary Search

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

44

Á Pre-conditions satisfied, key element in array

Á Pre-conditions satisfied, key element not in

array

Á Pre-conditions unsatisfied, key element in array

Á Pre-conditions unsatisfied, key element not in array

Á Input array has a single value

Á Input array has an even number of values

Á Input array has an odd number of values

Binary search - equiv. partitions

45

Binary search equiv. partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

46

Binary search - test cases

Input arr ay (T) Key (Key) Output (Found, L)

17 17 true, 1

17 0 false, ??

17, 21, 23, 29 17 true, 1

9, 16, 18, 30, 31, 41, 45 45 true, 7

17, 18, 21, 23, 29, 38, 41 23 true, 4

17, 18, 21, 23, 29, 33, 38 21 true, 3

12, 18, 21, 23, 32 23 true, 4

21, 23, 29, 33, 38 25 false, ??

47

Á Test software with sequences which have only a single value

Á Use sequences of different sizes in different tests

Á Derive tests so that the first, middle and last elements of the

sequence are accessed

Á Test with sequences of zero length

Testing guidelines (sequences)

48

Á Equivalence Class Testing is appropriate when input data is

defined in terms of intervals and sets of discrete values.

Á Equivalence Class Testing is strengthened when combined

with Boundary Value Testing

Á Strong equivalence makes the presumption that variables

are independent.

ü If that is not the case, redundant test cases may be generated

Equivalence Class Testing Guidelines

49

Á Decision tables are a precise yet compact way to model

complicated logic

Á Decision table based testing is appropriate when:

üThere is a lot of decision making

üThere are important logical relationships among input variables

üThere are calculations involving subsets of input variables

üThere is complex computation logic (high cyclomatic complexity)

Á Decision tables do not scale up very well:

üMay need to use òextended entryò decision table

üMay need to algebraically simplify the tables

Decision Table -Based Testing

50

1 2 3 4 5 6 7 8 9

C1: a,b,c forms a triangle? F T T T T T T T T

C2: a = b? - T T T T F F F F

C3: a = c? - T T F F T T F F

C4: b = c? - T F T F T F T F

A1: Not a triangle X

A2: Scalene X

A3: Isosceles X X X

A4: Equilateral X

A5: Impossible X X X

Triangle Decision Table

Precondition: a Ò b Ò c

51

1 2 3 4 5 6 7 8 9 10 11

C1-1: a < b+c? F T T T T T T T T T T

C1-2: b < a+c? - F T T T T T T T T T

C1-3: c < a+c? - - F T T T T T T T T

C2: a = b? - T T T T F F F F

C3: a = c? - T T F F T T F F

C4: b = c? - T F T F T F T F

A1: Not a triangle X

A2: Scalene X

A3: Isosceles X X X

A4: Equilateral X

A5: Impossible X X X

Triangle Decision Table - Refined

Precondition removed

52

Case ID a b c Expected Ouput

1 4 1 2 Not a triangle

2 1 4 2 Not a triangle

3 1 2 4 Not a triangle

4 5 5 5 Equilateral

5 ??? ??? ??? Impossible

6 ??? ??? ??? Impossible

7 2 2 3 Isosceles

8 ??? ??? ??? Impossible

9 2 3 2 Isosceles

10 3 2 2 Isosceles

11 3 4 5 Scalene

Triangle Test Cases

53

Á Process not influenced by component being tested

üAssumptions embodied in code not propagated to test data.

Á Robust with respect to changes in implementation

üTest data need not be changed when code is changed

Á Allows for independent testers

üTesters need not be familiar with code

Black -box testing: advantages

54

Boundary Value Triangle Testing

55

Equivalence Class Triangle Testing

WN : weak normal

WR : weak robust

56

Á Suppose a password field accepts minimum 6 characters

and maximum 10 characters

Á That means values in all partitions should be equivalent like "

0-5, 6-10, 11-14 ".

BVA vs EC (another example)

57

Test Scenario # Description Expected Outcome

1 Min value=1 & Max value=10 System should accept

2 Min value=0 & Max value=9 System should NOT accept

3 Min value=2 & Max value=11 System should NOT accept

4 Min value=0 & Max value=11 System should NOT accept

BVA vs EC (another example)

Test Scenario # Description Expected Outcome

1 Enter 0 to 5 characters in password field System should not accept

2 Enter 6 to 10 characters in password field System should accept

3 Enter 11 to 14 character in password field System should not accept

Equivalence Class Approach

Boundary Value Approach

58

B
o

u
n

d
a

ry
 V

a
lu

e ÅHas no
recognition of
data or logical
dependencies

ÅMechanical
generation of
test cases

E
q

u
iv

a
le

n
c
e

 C
la

s
s ÅTakes into

account data
dependencies

ÅMore thought
and care is
required to
define the
equivalence
classes

ÅMechanical
generation
after that D

e
c
is

io
n

 T
a

b
le

s ÅMost
sophisticated

ÅIt requires that
we consider
both data and
logical
dependencies

ÅIterative
process

ÅAllows manual
identification
of redundant
test cases

Effort Sophistication

59

Effort Sophistication

60

From specification to test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 60

61

Simple example: Postal code lookup

Á Input: ZIP code (5-digit

US Postal code)

Á Output: List of cities

ÁWhat are some

representative values (or

classes of value) to test?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 61

62

Example: Representative values

Á Correct zip code

üWith 0, 1, or many cities

Á Malformed zip code

üEmpty; 1-4 characters; 6 characters; very long

üNon-digit characters

üNon-character data

(c) 2007 Mauro Pezzè & Michal Young

Simple example with

one input, one output

Note prevalence of boundary

values (0 cities, 6 characters)

and error cases

63

Á Kent Beck developed one of the first tools for the unit testing

of classes (for Smalltalk)

Á Beck and Erich Gamma wrote junit and pyunit

Á A unit test consists of a set of test cases for a given class

üEach test case is a method that runs tests on an individual method in

the class

üThe tests take the form of assertions

Á A test suite can be run whenever a change is made to the

class under development

Unit Testing in Python

Credit: Fundamentals of Python: From First Programs Through Data Structures

64

Unit Testing in Python (continued)

Credit: Fundamentals of Python: From First Programs Through Data Structures

65Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

66Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

67

Unit Testing in Python (continued)

Credit: Fundamentals of Python: From First Programs Through Data Structures

68Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

69

Á The TestCase class includes a significant number of

methods that you can use to make assertions about your

code

Unit Testing in Python (continued)

Credit: Fundamentals of Python: From First Programs Through Data Structures

70

Á Although unit tests are ideal for testing individual classes, to

a certain extent they can also be used during integration

testing

Á By developing and running a good unit test for each class,

programmer can focus on writing code and leave the testing

to an automated assistant

Á Test-driven development encourages detection of errors

early in the coding process and increases the likelihood of

thorough white-box testing

Unit Testing in Python (continued)

Credit: Fundamentals of Python: From First Programs Through Data Structures

Fundamentals

Black Box Testing

White Box Testing

Levels of Testing

Debugging

ññA clever person solves a

problem. A wise person avoids

it.ò

ð Albert Einstein

72

Á Structural tests are based on the code structure:

ü in contrast to functional (requirements-based, ñblack-boxò testing)

ÁñStructuralò testing is still testing product functionality against

its specification.

üOnly the measure of thoroughness has changed.

Á Complements functional tests

üRun functional tests first, then measure what is missing

üCan cover low-level details missed in highlevel specification

Structural Testing
Research has shown that with all of

black box testing techniques , maybe

as much as 70 percent of all of the

code in the system might never have

been executed once!

73

Á Statement Coverage

üEnsures that each and every line of code is executed at least once.

Á Branch Coverage

üEnsures that each branch from each decision point is executed

üOne to validate the true branch and

üOther to validate the false branch

Á Path Coverage

üEnsures that all the paths of the program are traversed at least once

White Box Testing Techniques

74

Statement Coverage

Á If I consider TestCase_01 to be (A=40 and B=70), then all the

lines of code will be executed

Á But it does not consider the false case

Á Hence for maximum coverage, we need to consider ñBranch

Coverageò, which will evaluate the false conditions

a,b = input (' input a and b')
c = a+b
if (c > 100):

print ƧÉÔƦÓ ÄÏÎÅƞƨ

75

Branch Coverage

Á So for Branch coverage, we would require two test cases to

complete testing of this pseudo code.

üTestCase_01: A=33, B=45

üTestCase_02: A=25, B=30

ÁWith this, we can see that each and every line of code is

executed at least once.

a,b = input (' input a and b')
c = a+b
if (c > 100):

print ƧÉÔƦÓ ÄÏÎÅƞƨ
else :

print ƧÉÔƦÓ ÐÅÎÄÉÎÇƞƨ

76

Á Branch Coverage ensures more coverage than Statement

coverage

Á Branch coverage is more powerful than Statement coverage,

Á 100% Branch coverage itself means 100% statement

coverage,

Á 100 % statement coverage does not guarantee 100% branch

coverage

Statement vs Branch

77

Path Coverage

Á Path coverage is used to test the complex code snippets, involving
combination of loops and decision statements.

Á There are 2 decision statements, so for each decision statement we
would need to branches to test.
ü One for true and other for false condition.

Á So for 2 decision statements, we would require 2 test cases to test the
true side and 2 test cases to test the false side, which makes total of 4
test cases.

a,b = input (' input a and b')
c = a+b
if (c > 100):

print ƧÉÔƦÓ ÄÏÎÅƞƨ
if (a > 50):

print ƧÉÔƦÓ ÐÅÎÄÉÎÇƞƨ

78

Path Coverage

a,b = input (' input a and b')
c = a+b
if (c > 100):

print ƧÉÔƦÓ ÄÏÎÅƞƨ
if (a > 50):

print ƧÉÔƦÓ ÐÅÎÄÉÎÇƞƨ

Solution:

ÅTestCase_01: A=50, B=60

ÅTestCase_02: A=55, B=40

ÅTestCase_03: A=40, B=65

ÅTestCase_04: A=30, B=30

79

Paths Covered

Red Line

TestCase_01 = (A=50, B=60)

Blue Line

TestCase_02 = (A=55, B=40)

Orange Line

TestCase_03 = (A=40, B=65)

Green Line

TestCase_04 = (A=30, B=30)

80

Á The objective of path testing is to ensure that the set of test

cases is such that each path through the program is

executed at least once

Á The starting point for path testing is a program flow graph

that shows nodes representing program decisions and arcs

representing the flow of control

Á Statements with conditions are therefore nodes in the flow

graph

Path Coverage

81

Á Test coverage measure the amount of testing performed by a

set of tests

Á Coverage = number of coverage items exercised

total number of coverage items

Á Code coverage metric, measured as a percentage.

ü 80% coverage is sufficient on average

ü 100% may be unattainable (dead code)

üHigh cost to approach the limit

Test coverage

82

Derive flow
graph

Calculate
cyclomatic
complexity

Select a
basis set of

paths

Generate
test cases

for the paths

Path testing Steps

83

Á Flow graph is a graphical

representation of logical

control flow.

Á A circle (node or vertex)

represents one or more

procedural statements

Á An arrow (edge) represent

control flow

Á Regions are areas

bounded by nodes.

Building Flow Graphs

84

Building Flow Graphs

def binarySearch (elemArray , key):
1: first = 0

last = len (elemArray) - 1
found = False

2: while bottom <=top and not found :
3: mid = (first + last) // 2
4: if elemArray [mid] == key:
5: found = True

else :
6: if item < elemArray [mid]:
7: last = mid- 1

else :
8: first = mid+1
9: return found,mid

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

2

1

3

4

5

9

6

7 8

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

85

1 #include < stdio.h >
2 main ()
3 {
4 int i , n, f;
5 printf ƽƧÎ ˮ ƧƾƘ
6 scanf ƽƧ˧ÄƨƗ ŸÎƾƘ
7 if (n < 0) {
8 printf ƽƧ)ÎÖÁÌÉÄƙ ˧Ä\ ÎƨƗ ÎƾƘ
9 n= - 1;
10 } else {
11 f = 1;
12 for (i = 1; i <= n; i ++) {
13 f *= i ;
14 }
15 printf ƽƧÄƞ ˮ ˧Ä\ ÎƨƗ ÎƗ ÆƾƘ
16 }
17 return n;
18 }

if

for

Line 4,5,6

Line 7,10

Line 11

Line 8,9

Line 15Line 17

Line 12

Line 13

Building Flow Graphs (cont)

86

Á Cyclomatic Complexity is
a software metric
(measurement), used to
indicate the complexity of
a program.

Á It is a quantitative measure
of the number of linearly
independent paths through
a program's source code.

Á It was developed by
Thomas J. McCabe, Sr. in
1976.

Á 3 ways to calculate

Á Method 1:

V(G) = E - N + 2

E = edges

N = nodes

Á Method 2:

V(G) = P + 1

P = predicate nodes

(nodes that contain condition)

Á Method 3:

V(G) = R

R = regions

Cyclomatic Complexity

87

Cyclomatic Complexity Calculation

def calctemp (a, b, c):
if (a >b):

temp = a
else :

temp = b
if (c >temp):

temp = c
return temp

Method 1:

V(G) = E - N + 2

= 7 ï6 + 2 = 3

E = edges

N = nodes

Method 2:

V(G) = P + 1

= 2 + 1 = 3

P = predicate nodes

Method 3:

V(G) = R

= 3

R = regions

P2

P1

88

Á Independent path is defined as a path that has at least one

edge which has not been traversed before in any other

paths.

Á Basis Set - A set of possible execution paths of a program

üBasis Path testing guarantees to execute atleast one statement during

testing.

ü It means number test cases, will be equivalent to the cyclomatic

complexity of the program.

Á A dynamic program analyser may be used to check that

paths have been executed

Basis Set

89

Á Basis set for this flow

graph:

ü 1, 7

ü 1, 2, 6, 1, 7

ü 1, 2, 3, 4, 5, 2, 6, 1, 7

ü 1, 2, 3, 5, 2, 6, 1, 7

Basis Set

90

Á Cyclomatic complexity can

be calculated manually if

the program is small.

Á Automated tools need to be

used if the program is very

complex as this involves

more flow graphs

V(G) Meaning

1-10

Structured and well written code

High Testability Cost and Effort

is less

10-20

Complex Code Medium

Testability Cost and effort is

Medium

20-40

Very complex Code Low

Testability Cost and Effort are

high

>40
Not at all testable Very high

Cost and Effort

More on Cyclomatic Complexity

91

Black Box White Box

Advantage 1. Efficient for large segments of

code

2. Code access is not required

3. Separation between userôs and

developerôs perspectives

1. Efficient in finding errors and

problems

2. Required knowledge of internals of

the software under test is beneficial

for thorough testing

3. Allows finding hidden errors

4. Programmers introspection

5. Helps optimizing the code

6. Due to required internal knowledge of

the software, maximum coverage is

obtained

Disadvantage 1. Limited coverage since only a

fraction of test scenarios is

performed

2. Blind coverage since tester has

limited knowledge about the

application

1. Might not find unimplemented or

missing features

2. Requires high level knowledge of

internals of the software under test

3. Requires code access

White vs Black Box

Fundamentals

Black Box Testing

White Box Testing

Levels of Testing

Debugging

ñTesters donôt break software,

software is already broken.ò

ð Amir Gahrai

93

Levels of Testing

Client

Needs

Acceptance

Testing

Requirements
System

Testing

Design
Integration

Testing

Code
Unit

Testing

94

Á Unit testing

üTesting of individual software units at low level (module/class)

üOpacity: white box testing

üSpecification: low-level design and/or code structure

Á Integration testing

üSoftware/hardware components a combined and tested to evaluate

the interaction between them

üOpacity: black- and white-box testing

üSpecification: low- and high-level design

Levels of Testing

95

Á System testing

üTests a completely integrated system to verify that it meets its

requirements.

ü Includes stress testing, performance testing and usability testing

üOpacity: black-box testing

üSpecification: high-level design and SRS

Á Acceptance testing

üTesting done by the user before deployment

üEnables the customer to determine whether or not to accept the

system

üOpacity: black-box testing

üSpecification: SRS

Levels of Testing

96

Levels of Testing

