UTM

UNIVERSITI TEXNOLOG!H MALAYSIA

I'M THINKING ABOUT
REFACTORING THIS
PIECE OF CODE.

— ol Module T10
L3 CA Software Engineering

Testing

geek & poke

e :,.‘xfxxlﬂﬂ-l"t' DATAS SEY
. Y . 'Y\ ’: ‘ Iirf\.fjr

’~D Vp\

W
) g
RE 5
OU[‘ZE CASE IN G’U‘.TED Q(‘;’.._F‘Bx
\le
\ INFORMAT) o;

DEVE j e t“ I’Li) ‘pERFOR.}.J\yt,,T ON
EVERYTH!NG? F{ '“‘" .- AT I ,zp 3

\v’ vl
GOOD Fr"}u [L : J'f’n :?—.)
PORNT 3 F&Trcx.& b’PCN okl
SPECIFIC

innovative e entrepreneurial e global

Fundamentals

i
\
i
\
i
\
_
\
\

NnWhen debugging, no

Insert corrective code; experts

remove defective co
- Richard Pattis

>

o

10 L

Software Failure

A What is it?
U Failure to meet expectations

A What expectations are not achieved?
U Over budget
U Exceeds schedule and/or misses market window
U Doesndot meet stated customer requi
U Lower quality than expected
UPerformance doesndt meet expectat.
U Too difficult to use

Fatal Dose (1985 -87)

>\

Cost: 3 dead, 3 critically injured

Disaster: The Therac-25 was a radiation
therapy machine produced by Atomic
Energy of Canada Limited (AECL).
Patients were given massive overdoses
of radiation.

A Cause: Due to a subtle bug called a race
condition, a technician could accidentally
configure Therac-25 so the electron
beam would fire in high-power mode
without the proper patient shielding

A Multiple causes most of them bad
software engineering practices.
U Code reuse
U Removal of mechanical interlocks
U Unreasonable faith in software

>\

©UTM

WL WA

Patriot Surface -to-Air Missile (1991)

Cost: 28 soldiers dead, 100 injured

Disaster: During the first Gulf War, an
American Patriot Missile system in
Saudi Arabia failed to track and
Intercept an incoming lragi Scud missile.
The missile destroyed an American
Army barracks.

A Cause: A software rounding error | e
of 0.000000095 decimal combined with |
system uptime of 100 hours caused the
l ncoming Scud to |1 ¢
gateo that the Patr.i

v

N
—

Ariane Rocket Goes Boom (1996)

A Cost: $500 million (R&D $7 billion)

A Disaster:Ar i ane 5, Europeds newest unman
rocket, was intentionally destroyed 39 seconds
after launch. Also destroyed was its cargo of
four expensive and uninsured scientific
satellites.

A Cause: Shutdown occurred when the guidance
computer tried to convert the sideways rocket
velocity from 64-bits to a 16-bit format. The
number was too big, and an overflow error
resulted. When the guidance system shut down,
control passed to an identical redundant unit,
which also failed because it was running the
same algorithm.

Lost in Translation (1999)

A Cost: $125 million

A Disaster: After a 286-day journey from
Earth, the Mars Climate Orbiter
spacecraft flew on a trajectory that
brought it too close to Mars, causing it to
disintegrate.

A Cause: Navigation team at the Jet
Propulsion Laboratory used the metric
system, while Lockheed Martin
Astronautics (like all US industries),
which designed and built the spacecratft,
used the English system. The error had
affected the orbiter mission from its
launching almost 10 months and 416
million miles before its Sept. 23, 1999
failure.

{EHAR COMPANRY OUTCOME (COSTS IN US §)

2005 Hudson Bay Co. [Canada] Problems with inventory system contribute to $33.3 million® loss.
2004=05 UK Inland Revenue Software errors contribute to $3.45 billion® tax-credit overpayment.
2004 Avis Europe PLC [UK] Enterprise resource planning (ERP) system canceled after $54.5 million® is spent.
2004 Ford Motor Co. Purchasing sy bandoned after deployment costing approximately $400 million.
2004 J Sainsbury PLC [UK] Supply-chain management system abandoned after deployment costing $527 million."
ot | et BB I Exam p|es of
2003=04 AT&T Wireless Customer relations management (CRM) upgrade problems lead to revenue loss of $100 million.
2002 McDonald’s Corp. The Innovate information-purchasing system canceled after $170 million is spent.
2002 Sydney Water Corp. [Australia] Billing system canceled after $33.2 million' is spent. S Oﬂwa re
2002 CIGNA Corp. Problems with CRM system contribute to $445 million loss.
2001 Nike Inc. Problems with supply-chain management system contribute to S100 million loss. .
2001 Kmart Corp. Supply-chain management system canceled after $130 million is spent. Fal I u re
2000 Washington, D.C. City payroll system abandoned after deployment costing $25 million.
1999 United Way Administrative pr ing system led after SI12 million is spent. h
1999 State of Mississippi Tax system canceled after $11.2 million is spent; state receives SI85 million damages. [C arette 9 5]
1999 Hershey Foods Corp. Problems with ERP system contribute to $151 million loss.
1998 Snap-on Inc. Problems with order-entry system contribute to revenue loss of $50 million,
1997 U.S. Internal Revenue Service Tax modernization effort canceled after $4 billion is spent.
1997 State of Washington Department of Motor Vehicle (DMV) system canceled after $40 million is spent.
1997 Oxford Health Pians Inc. Billing and claims system problems contribute to quarterly loss; stock plummets,
leading to $3.4 billion loss in corporate value,
1996 Arianespace [France] Software specification and design errors cause $350 million Ariane 5 rocket to explode.
1996 FoxMeyer Drug Co. $40 million ERP system abandoned after deployment, forcing company into bankruptcy.
1995 Toronto Stock Exchange [Canada) Electronic trading system canceled after $25.5 million*™* is spent.
1994 U.S. Federal Aviation Administration Advanced Automation System canceled after $2.6 billion is spent.
1994 State of California DMV system canceled after S44 million is spent.
1994 Chemical Bank Software error causes a total of $15 million to be deducted from 100 000 customer accounts,
1993 London Stock Exchange [UK] Taurus stock settlement system canceled after $S600 million** is spent.
1993 Allstate Insurance Co. Office automation system abandoned after deployment, costing $130 million.
1993 London Ambulance Service [UK] Dispatch system canceled in 1990 at $11.25 million**; second attempt abandoned after

deployment, costing SI5 million.**

1993 Greyhound Lines Inc. Bus reservation system crashes repeatedly upon introduction, contributing to
revenue loss of $S61 million.

1992 Budget Rent-A-Car, Hilton Hotels, Marriott Travel reservation system canceled after $165 million is spent.
International, and AMR [American Airlines)

What is Testing?

A Process of evaluating a system or its component(s) with the
Intent to find that whether it satisfies the specified
requirements or not.

A Myers 79

U Testing is the process of executing a program with the intention of
finding errors.

U A good test case is one that has high probability of finind an
undiscovered error

U A successful test is on that uncovers an as-yet undisscovered error

Trivial Example in Testing

A Classic example from Glenford My e Tlse @rt of Software Testing, first
published in 1979.

A Function triangle takes three integers a,b,c which are the length of
triangle sides;

U Calculate whether the triangle is equilateral, isosceles, or scalene.

requires: 1 <= a,b,c <= MAXINT
effect: determine triangle type
def triangle (a, b, ¢):
a,b,c = sorted ([a, b, c])
if (@ + b)) <=c:
return ' notvalid
if a==»Db ==
return ‘equilateral’
if (@ ==Db) or (b ==c) or (a == c):
return 'isoceles
else :
return 'scalene '

@UTM [Myers79] G.J. Myers, Art of Software Testing, John Wiley & Sons, Inc., 1979.

What 60s so hard

A

"Just try it and see if it works..."

requires: 1 <= a,b,c <= MAXINT
effect: determine triangle type
def triangle (a, b, C):

about

At MAXINT = 100, exhaustive testing would require 1 billion

runs!

Key problem: choosing test suite (set of partitions of inputs)

U Small enough to finish quickly
U Large enough to validate the program

[Myers79]

©
ic
=

How Thorough Can We Be?

DI Dy DD DD D

Do you have a test case for an equilateral triangle?
Do you have a test case for an isosceles triangle?

Do you have at least three test cases for isosceles triangles, where all permutations
are considered? (e.g. (a,a,b), (a,b,a), (b,a,a))

Do you have a test case for an admissible scalene triangle?

Do you have a test case with one side zero?

Do you have the test case (0,0,0)?

Do you have a test case with negative values?

Do you have a test case with negative values?

Do you have a test case where the sum of two sides equals the third one?

Do you have at least three test cases for such non-triangles, where all permutations of
sides are considered?

Do you have a test case where the sum of the two smaller inputs is greater than the
third one?

Do you have at least three such test cases, considering all permutations?
Do you have test cases with very large integers (exceeding MAXINT) ?
Do you have a test case with non-integer values but numbers?

Do you have a test case with non-numbers e.g. strings, characters é

Do you have a test case where 2 or 4 inputs are provided?

[Myers79]

Testing | snot

A This example should demonstrate that
testing even a trivial program is not an
easy task.

A Consider the problem of testing an air
traffic guidance system with 100,000
Instructions, a compiler or just a payroll
program.

Soriv

i S R . -
Ve treren TEAMNE "‘" QJW')-“—-«- ey,
B L T

/:,THE ART orf
SOFTWARE
TESTING

2 .du

GLENFORD) MYERS

[Myers79]

Common Terminology

A Test case
U Atest input (or its execution trace)

A Test suite
U Set of test cases

A Test purpose

U A formal specification to guide testing

U e.g. aregular expression which the test case should satisfy y
A Coverage criterion

U A guide to exhaustively cover program structure.
U e.g. Statement coverage, Cond. coverage, Path coverage

When to Start Testing?

A An early start to testing reduces the cost, time to rework and
error free software that is delivered to the client.

A Testing can be started from the Requirements Gathering
phase and lasts till the deployment of the software.

A However it also depends on the development model that is
being used.
U In Water fall model formal testing is conducted in the Testing phase

U In incremental model, testing is performed at the end of every
iIncrement/iteration and at the end the whole application is tested.

When to Stop Testing?

A Testing is a never ending process and no one can say that
any software is 100% tested.

A Aspects which should be considered to stop the testing:

0

u
u
u

Testing Deadlines.

I Completion of test case execution.

Completion of Functional and code coverage to a certain point.

I Bug rate falls below a certain level and no high priority bugs are

identified.
Management decision.

Black Box vs White Box

Internals Internals
Not

Known

A also known as clear box
testing, glass box
testing, transparent box
testing and structural
testing

A Also known as
behavioral testing or
functional testing

ADriven by t
specification

A Treats the software as
a "black box",
examining functionality
without any knowledge
of internal
Implementation

Adriven by t
Implementation

A tests internal structures
or workings of a

o)
-
4
9]
D
e
X
@)
3
-
O
c program
m

Testing Methods

A Static vs. dynamic testing
U Static:
A Reviews, walkthroughs, or inspections
U Dynamic:
A actually executing programmed code with a given set of test cases

Static Code Analysis

A Static code analysis is done without executing any of the

code

U Peer review / code inspection .
A A human review process @/
A Find defects early ARV g >
A Increases code understanding FlndBu S

U Code scanners
A Software tools for simulated execution
A Checks exceptions, optimization, resource leaks, security
A Many tools available: Veracode, Checkstyle, FindBugs, Lint

Dynamic Test Approaches

A Unit testing
U Structural approach (white box or glass box)
U Functional approach (black box)

A Testing full programs

U Integration testing

U Regression testing (Check that the program still works after a feature
IS added to a tested program)

U Stress testing (e.g. web-service with many users)

Validation & Verification

A Validation

U The assurance that a product, service, or system meets the needs of the
customer and other identified stakeholders. It often involves acceptance
and suitability with external customers.

u hAre you building the right thing"
A Verification
U The evaluation of whether or not a product, service, or system complies

with a regulation, requirement, specification, or imposed condition. It is
often an internal process.

U hAre you building i1t right?hnm
A Verification and Validation are independent procedures that are

used together for checking that a product, service, or system
meets requirements and specifications.

©UTM

WL WA

How is Testing Done?

o® v
e @’® cam
¢ ¢ Run program / SallLLs
Define the expected

Choose input data o ‘method against the re_su![t:[c,h
@ configuration outcome - input and record the | ddainstine

i expected
¢ .’ ’ e ’ outcome
0°0
e

0 Black Box Testing

_
\
N
|
N
|
N
_
\
N

N B u lgrk in corners and
congregate at bound
0 Boris Beizer

Q/
e

Black -box testing

| nputs causing
anomalous
Input tes data behariour
Sydem

Outputs which reveal
the presence of
ddects

y

Output ted reaults o

Black Box Testing Approaches

Boundary
Value
Testing

Equivalence
Class
Testing

Input

Decision
Table based
Testing

Boundary Value Analysis

A

A

A

Single fault assumption:

U Failures are only rarely the result of the simultaneous occurrence of
two (or more) faults

Experience show that test cases that are close to boundary
condition have higher chances of detecting an error

Standard BVA vs Robustness Testing

Standard BVA

A For each variable, select five values:
U Minimum (min)
U Just above minimum (min+)
U Nominal value (nom)
U Just below maximum (max-)
U Maximum (max)

A Test cases : 4n+1
U 4: (min, min+, max-, max)
0 1: Nominal

Robustness Testing

A Extension of standard BVA

A Add two more values per variable:
U Just below minimum (min-)
U Just above maximum (max+)
A Test cases : 6n+1
U 6: (min-, min, min+, max-, max, max+)
U 1:Nominal

Example 1

A

Checki ng a
Standard BVA:
0 1,2,11,12

Robustness Testing BVA
0 0,1,2,11,12,13

Amont ho

nput

varl

Example 2

A Assume we have a

program with two input 400

variables, which have any 300 | |

value from 100 to 300){ 200 | |
A Test cases are: (200,100), 100

(200,101), (200, 200), (200, 0 1ioo zioo ;oo 400
299), (200, 300), (100, X
200), (101, 200), (299,

200), (300, 200)

K.K. Aggarwal & Yogesh Singh, New Age
International Publishers, New Delhi, 2005.

Example 2

A Apply robust test cases to 400
the same problem 4 300 [s]

A Test cases are: (200,99), 5| 200 28 it ialg
(200,100), (200,101) I | l
(200,200), (200,299), b f
(200,300) (200,301) 0 100 200 200 400
(99,200), (100,200), f
(101,200),

(299,200),(300,200),
(301,200)

100

K.K. Aggarwal & Yogesh Singh, New Age
International Publishers, New Delhi, 2005.

Equivalence partitioning

A Complements boundary value analysis

A Boundary Value Testing derives test cases with
U Serious gaps

U Massive redundancy

Avoid redundancy A Have fewer test cases

Complete testing A Remove gaps

The variable domain is partitioned into disjoint sub-sets

U Completeness
A The entire set is represented by the union of the sub-sets

U Redundancy
A The disjointness of the sets assures a form of non-redundancy

A Choose one test case from each sub-set

p S S

Equivalence partitioning

A Divide the input domain into equivalence classes of data

A The test of a representative value of each class is equivalent
to a test of any other value

A An equivalence class represents a set of valid or invalid
states for input conditions
U An input condition is:
A A specific numeric value
A Arange of values
A A set of related values
A A Boolean condition

Implementation Steps

1. The equivalence classes are identified by taking each input
condition and partitioning it into valid and invalid classes.

U For example, if an input condition specifies a range of values from 1 to
999, we identify one valid equivalence class [1<item<999]; and two
iInvalid equivalence classes [item<1] and [item>999].

2. Generate the test cases using the equivalence classes
identified in the previous step.
U WIriting test cases covering all the valid equivalence classes.

U Then write a test case for each invalid equivalence class so that no
test contains more than one invalid class.

0 This ensures that no two invalid classes mask each other.

Equivalence partitioning

Example 1

A If input is a 5-digit integer between 10,000 and 99,999,
equivalence partitions are
1. <10,000,
2. 10,000-99,999
3. >100,000
A Choose test cases at the boundary of these
sets
t 00000, 09999, 10000, 99999, 100001

9999 100000
10000 50000 999

Y

Between 10000 and 99999

Less than 10000

More than 99999

Input values

Example 2

A Amont ho -vZeguivaldntegartitions:
io00, 1..12, >12

If (month >= 0) && (month < 13):

A Can have different handling for diff. values:
“a 00, 1..3, 4..12, >12

If (month >=0) && (month < 13):
If (month < 4):
... something
else:
... different thing ...

Example 3 Sequential Search

A When data items are stored in a collection such as a list, we say
that they have a linear or sequential relationship. Each data item Is
stored in a position relative to the others. In Python lists, these
relative positions are the index values of the individual items.
Since these index values are ordered, it is possible for us to visit
them in sequence. This process gives rise to our first searching
technique, the sequential search.

A Starting at the first item in the list, we simply move from item to
item, following the underlying sequential ordering until we either
find what we are looking for or run out of items. If we run out of

items, we have discovered that the item we were searching for
was not present.

Sequential Search

def (elemArray , key):
pos = 0
found = False

while pos < len (elemArray) and not found:
if elemArray [pos] == key:
found = True
else :
pos = pos +1
return found,pos

testlist =10, 2,32, 8, 17, 19, 42, 13, 0]
print (sequentialSearch (testlist , 3))
print (sequentialSearch (testlist , 13))

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheSequentialSearch.html

Search routine - input partitions

A

Inputs which conform to the pre-conditions
Inputs where a pre-condition does not hold

Inputs where the key element is a member of
the array

Inputs where the key element is not a member
of the array

Search routine - input partitions

Array Element

Single value In sequence

Single value Not in sequence

More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequene (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0] false, ?7?

17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 false, ?7?

Example 4 Binary Search

def (elemArray , key):
first =0
last = len (elemArray)-1
found = False

while first <=last and not found:
midpoint = (first + last) /[2
if elemArray [midpoint] == key:
found = True
else :
If item < elemArray [midpoint]:
last = midpoint -1
else :
first = midpoint +1
return found,midpoint

testlist =10, 1, 2, 8, 13, 17, 19, 32, 42]]
print (binarySearch (testlist , 3))
print (binarySearch (testlist , 13))

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Example 4 Binary Search

A We can take advantage of the ordered list by using binary search
Instead of linear search.

A Abinary search will start by examining the middle item. If that
item is the one we are searching for, we are done. If it is not the
correct item, we can use the ordered nature of the list to eliminate
half of the remaining items. If the item we are searching for is
greater than the middle item, we know that the entire lower half of
the list as well as the middle item can be eliminated from further
consideration. The item, if it is in the list, must be in the upper half.

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Binary search - equiv. partitions

>\

Pre-conditions satisfied, key element in array

Pre-conditions satisfied, key element not in
array

A Pre-conditions unsatisfied, key element in array

A Pre-conditions unsatisfied, key element not in array
A Input array has a single value
A
A

>\

Input array has an even number of values
Input array has an odd number of values

Binary search equiv. partitions

Equi valence cl ass boundari es

Y Y VY

'

ements > Mid

ements < Mid

Mid-point

Binary search - test cases

Input arr ay (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 false, ?7?

17,21, 23, 29 17 true, 1

9, 16, 18, 30, 31, 41,45 45 true, 7

17,18, 21, 23, 29, 38, 41 23 true,4

17,18, 21, 23, 29, 33, 38 21 true, 3

12,18, 21, 23, 32 23 true,4

21, 23, 29, 33, 38 25 false, ?7?

Testing guidelines (sequences)

>\

A

Test software with sequences which have only a single value
Use sequences of different sizes in different tests

Derive tests so that the first, middle and last elements of the
sequence are accessed

Test with sequences of zero length

Equivalence Class Testing Guidelines

A Equivalence Class Testing is appropriate when input data is
defined in terms of intervals and sets of discrete values.

A Equivalence Class Testing is strengthened when combined
with Boundary Value Testing

A Strong equivalence makes the presumption that variables
are independent.
U If that is not the case, redundant test cases may be generated

Decision Table -Based Testing

A

A

A

Decision tables are a precise yet compact way to model

complicated logic

Decision table based testing is appropriate when:
U There is a lot of decision making

U There are important logical relationships among input variables

U There are calculations involving subsets of input variables

U There is complex computation logic (high cyclomatic complexity)

Decision tables do not scale up very well:
UMay need to use oOoOextended
U May need to algebraically simplify the tables

entryo

C

Triangle Decision Table

C1: a,b,c forms a triangle?

C2:a=0h? -

C3:a=c? -

|||
|||]|w
IR ES
n|im|H|—|w
—H|4|Tn|d|o
T |7n| |~

C4:b=c? -

—H|Tm|[m|d]|o
m({m|m|H|©

Al: Not a triangle X

A2: Scalene

A3: Isosceles X

A4: Equilateral X

A5: Impossible X| X X

Precondi ti on:

Triangle Decision Table - Refined

1

Cl-1:a<b+c?

MmN

Cl-2: b < a+c? -

||

Cl-3:c<a+c? - | -

C2:a=0h? -

C3:a=c? -

T m	A~			
	m	A	d	d]
			d]©	

C4:b=c? -

—H|m(Tn|4|4|
T|m|{Tn|4|4|

Al: Not a triangle | X

A2: Scalene

A3: Isosceles X X

A4: Equilateral X

A5: Impossible X | X X

Precondition removed

Triangle Test Cases

CaselD | a b c | Expected Ouput
1 4 1 2 Not a triangle
2 1 4 2 Not a triangle
3 1 2 4 Not a triangle
4 5 5 5 Equilateral
5 ??7? | 2?7 | ?7?7? Impossible
6 ??7? | 2?7 | ?7?7? Impossible
7 2 2 3 |sosceles
8 ??7? | 2?7 | ?7?7? Impossible
9 2 3 2 |Isosceles

10 3 2 2 Isosceles
11 3 4 5 Scalene

Black -box testing: advantages

A Process not influenced by component being tested
U Assumptions embodied in code not propagated to test data.

A Robust with respect to changes in implementation
U Test data need not be changed when code is changed

A Allows for independent testers
U Testers need not be familiar with code

Boundary Value Triangle Testing

Test Case a b C Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a Triangle
] 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles
10 100 200 100 Mot a Triangle
11 1 100 100 Isosceles
12 2 100 100 Isosceles
13 100 100 100 Equilateral
14 199 100 100 Isosceles
15 200 100 100 Not a Triangle

Equivalence Class Triangle Testing

Test Case a b C Eéﬂetgt;d
WN1 5 5 5 Equilateral
WN2 2 2 3 Isosceles
WN3 3 4 5 Scalene
WN4 4 1 2 Not a Triangle
WR1 -1 5 5 a not in range
WR2 5 -1 5 b not in range
WR3 5 5 -1 c not in range
WR4 201 5 5 a not in range
WR5 5 201 5 b not in range
WR6E 5 5 201 c not in range

WN : weak normal
WR : weak robust

BVA vs EC (another example)

A Suppose a password field accepts minimum 6 characters
and maximum 10 characters

A That means values in all partitions should be equivalent like "
0-5, 6-10, 11-14 ".

BVA vs EC (another example)

Boundary Value Approach
1 Min value=1 & Max value=10 System should accept
2 Min value=0 & Max value=9 System should NOT accept
3 Min value=2 & Max value=11 System should NOT accept
4 Min value=0 & Max value=11 System should NOT accept

Equivalence Class Approach

1 Enter O to 5 characters in password field System should not accept
2 Enter 6 to 10 characters in password field System should accept
3 Enter 11 to 14 character in password field System should not accept

Effort Sophistication

AHas no
recognition of
data or logical
dependencies

> AMechanical
generation of
test cases

Value

Boundar

Equivalence Class

ATakes into

account data
dependencies

AMore thought
and care is
required to
define the
equivalence
classes

AMechanical
generation
after that

Decision Tables

AMost

sophisticated

Alt requires that
we consider
both data and
logical
dependencies

Alterative
process

AAllows manual
identification
of redundant
test cases

Effort Sophistication

Effort to Identify Test Cases

3
high
= ®
/' -
///
low ./'
Boundary Equivalence Decision
value class table

Number of Test Cases
high .
\\.. \\\\\\
low (TTmea -®
Boundary Equivalence Decision
value class table
Sophistication

* Sophistication

From specification to test cases

mjro Pezzé & Michal Young

Functional
Specifications

Independently
Testable
Feature

Representative

Values Model

Test : Test

Case | Cases
Specifications

Ch 10, slide 60

Simple example: Postal code lookup

UNITED STATES
B POSTAL SERVICE.

/ @ ZIP Code Lookup
¥

Search By Address » Search By City » Search By Company » Find

Find a list of cities that are in a ZIP Code.

* Required Fields o
* ZIP Code de (5-digit
de)
Submit >)f CltleS

A What are some
representative values (or
classes of value) to test?

°UT (c) 2007 Mauro Pezzé & Michal Young Ch 10, slide 61

Example: Representative values

= UNITED STATES
B POSTAL SERVICE.

Simple example with

' LD 21p code Lok
one input, one output A3 =2 2 code Lookup

Search By Address » Search By City » Search By Company » Find

Find a list of cities that are in a ZIP Code.

* Required Fields

* ZIP Code

Submit >

Ve

A Correct zip code Note prevalence of boundary
values (O cities, 6 characters)

0 With 0, 1, or many cities and error cases

Ve

A Malformed zip code
U Empty; 1-4 characters; 6 characters; very long
U Non-digit characters
U Non-character data

@UTM (c) 2007 Mauro Pezze & Michal Young

Unit Testing in Python

A Kent Beck developed one of the first tools for the unit testing
of classes (for Smalltalk)

A Beck and Erich Gamma wrote junit and pyunit

A A unit test consists of a set of test cases for a given class

(I Each test case is a method that runs tests on an individual method in
the class

U The tests take the form of assertions

A Atest suite can be run whenever a change is made to the
class under development

Credit: Fundamentals of Python: From First Programs Through Data Structures

©UTM

WL WA

Unit Testing in Python (continued)

TRINI

File: teststudent.py
Unit test sulite for the Student class.

TR

from student import Student
import unittest

class TestStudent(unittest.TestCase):
""'"Pafines a unit test sulite for the Student class."""

def setUp(self):
"""Sets up a test fixture with 5 scores."""

self. student = Student("TEST", 5)

def testGetName(self):
"""Test case for getName."""
self.assertEquals("TEST", self. student.getName())

Creates a suite and runs the text-based unit test on it
suite = unittest.makeSuite(TestStudent)
unittest.TextTestRunner().run(suite)

Credit: Fundamentals of Python: From First Programs Through Data Structures

©UT™

Unit Testing in Python (continued)

Ran 1 test in 0.007s

OK

[FIGURE 12.13] A successful unit test of the Student class

Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

Traceback (most recent call last):
File "/Users/ken/teststudent.py", line 18, in testGetName
self.assertEquals("KEN", self. student.getName())

AssertionError: 'KEN' != 'TEST'

Ran 1 test in 0.003s

FAILED (failures=1)

[FIGURE 12.14] A failed unit test of the Student class

Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

class TestStudent(unittest.TestCase):
nn"Nefines a unit test suite for the Student class."""

def setUp(self):
"""Sets up a test fixture. Scores are 1-5."""
self. student = Student("TEST", 5)
for index in xrange(l, 6):
score = self. student.setScore(index, index)

def testGetName(self):
"""Test case for getName."""
self.assertEquals("TEST", self. student.getName())

def testGetAverage(self):
""" Test case for getAverage."""
average = self. student.getAverage()
self.assertEquals(3, average)

QUT Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

def testGetHighScore(self):
""" Test case for getHighScore."""
high = self. student.getHighScore()
self.assertEquals(5, high)

def testGetScore(self):
""" Test case for getScore."""
for index in xrange(l, 6):
score = self. student.getScore(index)
self.assertEquals (index, score)
self.assertRaises(IndexError,
self. student.getScore,
0)
self.assertRaises(IndexError,
self. student.getScore,
6)

def testSetScore(self):
"""Test case for setScore."""
for index in xrange(l, 6):
score = self. student.setScore(index, index + 1)
for index in xrange(l, 6):
score = self. student.getScore(index)
self.assertEquals(index + 1, score)

Credit: Fundamentals of Python: From First Programs Through Data Structures

Unit Testing in Python (continued)

A The TestCase class includes a significant number of
methods that you can use to make assertions about your

code
TestCase METHOD WHAT IT DOES
assert_(aBoolean) Signals a failure if aBoolean is False.
assertEquals(x, V) Signals a failure if x and y are not equal.
assertRaises(e, £, X,..,Y) Tests that exception e is raised when £ is
called with arguments x, ..., y.
fail() Signals a failure unconditionally.

[TABLE 12.1] Some methods for making assertions in the TestCase class

Credit: Fundamentals of Python: From First Programs Through Data Structures

@©UTM

IV WO A

Unit Testing in Python (continued)

A Although unit tests are ideal for testing individual classes, to
a certain extent they can also be used during integration
testing

A By developing and running a good unit test for each class,
programmer can focus on writing code and leave the testing
to an automated assistant

A Test-driven development encourages detection of errors
early in the coding process and increases the likelihood of
thorough white-box testing

Credit: Fundamentals of Python: From First Programs Through Data Structures

0 White Box Testing

ifiA clever person so /
problem. A wise person avoids

e pres

d Albert Einstein

Structural Testing

N\

Research has shown that with all of
black box testing techniques , maybe
as much as 70 percent of all of the
code in the system might never have
been executed once!

A Structural tests are based on the code structure:

U in contrast to functional (requirements-b a s e d , -biolxloa dlke st i |

AMBtructural o test
Its specification.

ng I s still

U Only the measure of thoroughness has changed.

A Complements functional tests

U Run functional tests first, then measure what is missing
U Can cover low-level details missed in highlevel specification

White Box Testing Techniques

A Statement Coverage
U Ensures that each and every line of code is executed at least once.

A Branch Coverage
U Ensures that each branch from each decision point is executed
U One to validate the true branch and
U Other to validate the false branch

A Path Coverage
U Ensures that all the paths of the program are traversed at least once

Statement Coverage

a,b = input ('inputaandb')
c= atb
if (c > 100):
pint 2EORO Al 1l Ane

A If | consider TestCase 01 to be (A=40 and B=70), then all the
lines of code will be executed

A But it does not consider the false case

A Hence for maximum coverage, we need to considerfi Br a n c
Coverageo, which will eval uat

©UTM .

WL WA

Branch Coverage

a,o = input ('inputaandb’)

c= atb
if (c > 100):

pint 2EORO Al 1l Ane
else :

pint 2EOMWAI AEI Cne

A So for Branch coverage, we would require two test cases to
complete testing of this pseudo code.
U TestCase 01: A=33, B=45
U TestCase 02: A=25, B=30

A With this, we can see that each and every line of code is
executed at least once.

©UTM

WL WA

Statement vs Branch

A Branch Coverage ensures more coverage than Statement
coverage

Branch coverage is more powerful than Statement coverage,

100% Branch coverage itself means 100% statement
coverage,

A 100 % statement coverage does not guarantee 100% branch
coverage

> >

Path Coverage

a,o = input ('inputaandb’)

c= atb
if (c > 100):

pint 2EORO Al 1l Ane
if (@ > 50):

pint 2EOMWAI AEI Cne

A Path coverage is used to test the complex code snippets, involving
combination of loops and decision statements.

A There are 2 decision statements, so for each decision statement we
would need to branches to test.

U One for true and other for false condition.

A So for 2 decision statements, we would require 2 test cases to test the
true side and 2 test cases to test the false side, which makes total of 4
test cases.

Path Coverage

a,o = input ('inputaandb’)
c= atb
if (c > 100):
pint 2EORO Al 1l Ane
if (@ > 50):

pint 2EOMWAIT AEIT Cn —e []
Solution:
A TestCase 01: A=5 0B=6 0
A TestCase 02: A=5 5B=4 0
A TestCase 03: A=4 0B=6 5
A TestCase 04: A=3 0B=3 0 bt Coverage

©UT™

Paths Covered

Red Line

TestCase 01 = A£5 0B=6 ()

Blue Line

TestCase 02 = A£5 5B=4 ()

Orange Line

TestCase 03 = Af4 0B=6 %

Green Line

TestCase 04 = A£3 0B=3 0

/ '~ulA&'
YES
G0
NO
End if

d
[

P W

A>45

YES

Primt "its Pendng”

NO

- I

Path Coverage

Path Coverage

The objective of path testing is to ensure that the set of test
cases Is such that each path through the program is
executed at least once

The starting point for path testing is a program flow graph
that shows nodes representing program decisions and arcs
representing the flow of control

Statements with conditions are therefore nodes in the flow
graph

Test coverage

A Test coverage measure the amount of testing performed by a
set of tests

A Coverage = number of coverage items exercised
total number of coverage items

A Code coverage metric, measured as a percentage.
U 80% coverage is sufficient on average
U 100% may be unattainable (dead code)
U High cost to approach the limit

Path testing Steps

Derive flow
graph

Calculate
cyclomatic
complexity

Select a
basis set of
paths

Generate
test cases
for the paths

Building Flow Graphs

A Flow graph is a graphical
representation of logical
control flow.

z Sequence
A A circle (node or vertex)
represents one or more —
procedural statements
A

An arrow (edge) represent
control flow

A Regions are areas
bounded by nodes.

While

Building Flow Graphs

def (elemArray , key):
1: first =0
last = len (elemArray)-1
found = False

2: while bottom <=top and not found:
3: mid = (first + last) /I 2
4: if elemArray [mid] == key:
5: found = True

else :
6: if item < elemArray [mid]:
7. last = mid-1

else :

8: first = mid+1
9: return found,mid

https://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html

Building Flow Graphs (cont)

Line 4,5,6

1 #include < stdio.h >

2 main ()
3{
4 int i,n,f Line 7,10
5 printft 521 7 24K
6 scanf s 241 A2t YI tK
7 if(n<0){ Line 11
8 printtt 5 2) 1 OAIl EIA&t 41At K
9 n= -1; Line 8,9
10 }else{
11 f=1; Line 12
12 for (i =1, i <=n; i++){
*— 1 -
12) J L Line 17 Line 15 Line 13
15 printtt s 2An Y1 2tA T+ ALK
16 }
17 returnn;
18 }

Cyclomatic Complexity

A Method 1:
A Cyclomatic Complexity is
a software metric V(G)=E-N+2
(measurement), used to E = edges
Indicate the complexity of N = nodes

a program.

A Itis a quantitative measure ~ # Method 2
of the number of linearly
independent paths through V(&) = e 4
a program's source code. P = predicate nodes

A It was developed by (nodes that contain condition)
Thomas J. McCabe, Sr. In
1976.

. A Method 3:
A 3 ways to calculate

V(G) =R

@©UTM R =regions

Cyclomatic Complexity Calculation

def (a, b, c):
if (a>b):
temp = a
else :
temp = b
if (c >temp):
temp = c
return temp

S (R

Method 1:

V(G =E-N+2
=716+2=3

E = edges

N = nodes

Method 2:

V(G =P +1
=2+1=3

P = predicate nodes

Method 3:

R =regions

Basis Set

A Independent path is defined as a path that has at least one
edge which has not been traversed before in any other
paths.

A Basis Set - A set of possible execution paths of a program

U Basis Path testing guarantees to execute atleast one statement during
testing.
U It means number test cases, will be equivalent to the cyclomatic
complexity of the program.
A A dynamic program analyser may be used to check that

paths have been executed

Basis Set

A Basis set for this flow

graph:

01,7

01,2617
01,2,3,4,52,6,1,7
01,2,3,5,2,6,1,7

More on Cyclomatic Complexity

_V(G) [Meaning

Structured and well written code

A Cyclomatic complexity can 1-10 High Testability Cost and Effort
be calculated manually if is less
the program is small. Complex Code Medium
y 10-20 Testability Cost and effort is
A Automated tools need to be Medium d
used If the pro_gr_am IS Very Very complex Code Low
complex as this involves 20-40 Testability Cost and Effort are
more flow graphs 12l

Not at all testable Very high

=40 Cost and Effort

White vs Black Box
| BlackBox | WhiteBox |

Advantage 1. Efficient for large segments of 1. Efficient in finding errors and
code problems
2. Code access is not required 2. Required knowledge of internals of

3. Separation betyvy the software under test is beneficial
devel oper 6s per s pfa theraughdesting

3. Allows finding hidden errors
4. Programmers introspection
5. Helps optimizing the code
6. Due to required internal knowledge of
the software, maximum coverage is
obtained
Disadvantage 1. Limited coverage sinceonlya 1. Might not find unimplemented or
fraction of test scenarios is missing features
performed 2. Requires high level knowledge of
2. Blind coverage since tester has internals of the software under test
limited knowledge about the 3. Requires code access
application

Levels of Testing

_
\
\
|
\
|
\
_
\
\

\~’/
Mesters donot br eak

software is already broken. 0
0 Amir Gahrai a

Levels of Testing

Client -
Needs

l

Requirements ¢ = = = — = = >

l

Design = — — — = — — = >

Acceptance
Testing

1

System
Testing

1

Integration
Testing

]

Unit
Testing

Levels of Testing

A Unit testing
U Testing of individual software units at low level (module/class)
U Opacity: white box testing
U Specification: low-level design and/or code structure

Ve

A Integration testing

U Software/hardware components a combined and tested to evaluate
the interaction between them

U Opacity: black- and white-box testing
U Specification: low- and high-level design

Levels of Testing

A System testing

U Tests a completely integrated system to verify that it meets its
reguirements.

U Includes stress testing, performance testing and usability testing
U Opacity: black-box testing
U Specification: high-level design and SRS
A Acceptance testing
U Testing done by the user before deployment

U Enables the customer to determine whether or not to accept the
system

U Opacity: black-box testing
U Specification: SRS

Levels of Testing

